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COMBINATION OF RAYLEIGH AND DYNAMIC EDGE EFFECT METHODS 

IN STUDYING VIBRATIONS OF RECTANGULAR PLATES 

G. A. Krizhevskii UDC 539~ 

The dynamic edge effect method (DEEM) suggested by Bolotin has been used extensively in 
solving problems of natural vibrations for elastic rectangular plates and also for structures 
consisting of them [i]. Generally speaking the method intended for finding high natural 
frequencies and forms under kinetic boundary conditions also gives good results for low forms 
of vibration [2]. With existence of static conditions at the contour the accuracy of deter- 
mining low natural values decreases [3]. The error of the DEEM is connected with the fact 
that the solution constructed by means of it does not satisfy the original problem in the 
vicinity of boundaries. One possible way for refining the method is construction of angular 
boundary layers [4], and another is combination of the asymptotic method with variation 
methods. Combination of the DEEM with the Rayleigh-Ritz method was the subject of [5], al- 
though there only the case of kinematic boundary conditions was considered, and therefore 
it is difficult to check the efficiency of this approach. Equations obtained in [5] for 
natural frequencies are only applicable for a square plate clamped along all edges. Of 
particular interest with this combination is estimation of the first approximation (Rayleigh 
equation) since in this case it is possible to obtain an expression for natural frequency in 
closed form. 

In the present work an asymptotic expression is obtained by combining Rayleigh and DEEM 
methods for the frequency of natural vibrations suitable for arbitrary unchanged conditions 
at the boundary along the rectilinear edge, and the efficiency of this approach has been 
studied. 

We consider vibration of an elastic rectangular (0 ~ x I ~ al, 0 ~ x 2 ga, 2) plate. 
According to Rayleigh the expression for frequency parameter ~ has the form 

)-" )j % \31/2 
= axa2 9h/D .[ ~ (w~l + w~22 + 2vw,llw,iz + 2 (1 -- v)w~12) dxldx w~dxadx2 . (1)  

oo 

H e r e E  = ~alai(ph/D)l/2; w i s  n o r m a l  d e f l e c t i o n ;  v i s  P o i s s o n ' s  r a t i o ;  w i s  n a t u r a l  f r e q u e n c y ;  
h i s  t h i c k n e s s ;  p i s  m a t e r i a l  d e n s i t y ;  D = E h 3 / [ 1 2 ( 1  - 9 2 ) ] ;  E i s  Y o u n g ' s  m o d u l u s ,  

The expression for the function of deflection obtained by means of the DEEM [I] is 
written as 

/ (X I, Xi) ~ Sl(Xl) sin (~1x2 -[- 12) ~- Si(xi) sin (~1xl + ll); ( 2 )  

Si(xi) = sin (~ixi -{- li) ]-Cilexp(a~x~) -t- C12 exp (--aixl) (i ---- 1, 2). 

We take the expression for deflection w(xz, xi) in the form 

(3) 

w ( x .  x~) = &(x~)Si(x~). (4) 
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TABLE 1 

13,97 3.6 
22,21 3;5 
35,95 3,2 

13,47 
2t,98 
34,8t 

1t,3t 
22,2t 
33,0t 

19,1 64,7i 
3,5 74,46 
5,4 t00,99 

t,6 63,69 
1,3 73,51 
t,4 105,3t 

60,93 
7t,86 

t03,31 

4,5 
2,3 
2,t 

From (i), (3), (4) an equation follows for frequency parameter valid for arbitrary con- 
ditions at the edges: 

= a~a2{(ph/D)[Kt t- Kz -- 2~K3 -~ 2(1 - -  v)K~]/Ko}V:. ( 5 )  

H e r e  Ko = (A~)-(Az%); K~ =: (A~I)(A2~); K2 = (A~g)(A2q2); K3 = (A~I)(A~zz);  Ka = (B101)(B202). 
Vector components are as follows: 

{t; 2; 1}, ~1~ = {1~; 2 ~. = - -  2 a ~ r  a~},  

z ~  = 1- ~;~ - ~, 
A~ = {A~j; A2]; A3j}, Bj = {A4j; Asj; Ae] } (] = 1, 2). 

Coordinates Aij are found by the equations 

AI~ = {z/2 -- [sin 2 ([~z + /j)]/(4~)} I / ,  

A2j = {(a~ + ~ ) - t  [(zjFajF1~- ~F3~F2jl}[o j, 

A~j = { z / 2  + [sin 2 (~jz + /j)]/(4~j)} Io s, 

A~j = {(a~ + 13~) - t  [ajFajl;2j 4- ~jF.~jFI~]} IoJ, 

A,j = {Fa/(2ar - -  2C~1C~2 z} Io ~ (1 = t,  2), 

whereF1~ = sin(~jz + s F2j = cos(Sj~ + s F3j -:~2 exp(~jz) + C. 2 exp(-~jz); F4j = 
Cjl exp~jz) - Cj2 exp(-~xjz); Fsj = ujl exp(2~jz) --~ �89 exp(-2ajz) ~j = i, 2)] 

We apply the algorithm given above to finding natural frequencies for a square plate 
with a contour free from forces. The set of transcendental equations for finding unknown 
wave numbers in this case has the form [4] ~jaj = 2Lj + mj~ with Lj =arctan{(sj/~j)[$j2 + 
(2 - V)Sk212/~$j 2 + V~k2) 2} (j = i, 2, k = I, 2, j ~ k, mj = 0, i, 2 .... ). Constants aj = 
(8j2 + 25k2)i/2 (j = i, 2, k = i, 2, j ~ k). In terms of wave numbers from boundary condi- 
tions constants s and Cij (i, j = i, 2) in Eq. (3), and consequently also functions St(x1), 
S2(x 2) [I] are determined. 

Results of calculating dimensionless frequency I by the Rayleigh-Bolotin method (RBM) 
are given above, by the series method (SM) [6], and by the traditional DEEM are given in 
Table 1 (with v = 0.3). It is necessary to note that in the solution obtained by the SM 
[6] six terms are retained in the series, and therefore the result for calculating the 
basic tone apparently exhibits high accuracy. 

Comparison shows that the present method makes it possible to refine considerably the 
results found by the Bolotin method for the first frequency. Use of the RBM and DEEM, 
giving the upper and lower estimates for natural values, respectively, for the highest forms 
makes it possible to obtain quite narrow boundaries for the interval in which natural fre- 
quency is found. With an increase in the number of forms both solutions approach the accu- 
rate solution asymptotically. 
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RESULTS OF DETERMINING LIMITING DYNAMIC COMPRESSION DIAGRAMS 

FOR SANDY SOILS AND CLAY 

G. V. Rykov UDC 624.131+539.215 

A method was described in [I, 2] for determining limiting dynamic compression diagrams 
corresponding to instantaneous loading (~ = ~) for soils and porous materials sensitive to 
deformation rate. The method is based on the relationship of weak-disturbance propagation 
rates with the limiting dynamic diagram ~(s) with compression of a viscopiastic material. 
However, actual data for determining ~ (g) in [i, 2] was only obtained for air-dried sandy 
soil. Given below are the results of experimental studies for determining these diagrams 
for sandy soils with different moisture contents, and also for dense clays. 

It is assumed in the same way as in [i, 2] that the main properties of sandy and clay 
soils under short-term dynamic loads with sufficient accuracy are described with uniaxial 
compression (under plane Strain conditions) by a deformation rule 

ot 

Oa 1 

OG 1 iz" (r ~) at + g (al f (e)), E (oh, e) lIE* 
(~1, E)! < O, 

(1) 

(P0 is initial material density). 
diagram 

where o z is the greatest principal stress; E(g), E,(ol, s) are functions determined by experi- 
ment with loading (3oi/8t e 0) and with unloading (8oi/8t < 0); g(z) > 0 with z = o I - f(r > 
0 and g(z) ~ 0 with z ~ 0; f(s) is the static compression diagram for the material with ~ § 

As shown in [2], for a material of type (I) the relationship for a small-disturbance 
propagation rate c(g) and limiting dynamic diagram ~(~) (~ = ~) under load is determined by 
the relationship 

E (0 d~ (~) = d~ = ~oc~ (~) ( 2 )  

By integrating, from (2) we obtain the limiting dynamic 

J ' E  d~, _- ( 3 )  ( 0  = (~) ~ ~ .  
0 

Thus, by knowing from an experiment the relationship c(s) it is possible to plot the limiting 
dynamic diagram ~ (e) (~ = ~) with loading. 

Testing was carried out in a UDN-150 unit [i, 2] fitted with a system for measuring weak- 
disturbance propagation rates in a compressed material. As in [i], compression was created as 
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